Introduction to Microfluidics

2010/03/05 Yi-Chung Tung, Ph.D. Research Center for Applied Sciences Academia Sinica, Taipei, Taiwan

Outline

- Introduction to Microfluidics
- Basic Fluid Mechanics Concepts
- Equivalent Fluidic Circuit Model
- Conclusion

What is Microfluidics?

- *Microfluidics* = Micro + Fluidics
- *Micro*: 10⁻⁶
 - Small size (sub-mm)
 - Small volumes (μl, nl, pl)
- <u>Fluidics</u>: handling of liquids and/or gases

Advantages of Microfluidics

- The motivation for using a microfluidic system is analogous to the argument for using integrated circuits (IC) to replace the discrete component circuits.
- Advantages:

Miniaturization: Portability (Lab-on-a-Chip)

Integration: Low Costs, Batch Fabrication

Automation: Simplicity of Operation

Microfluidics in vivo

• Circulating and Respiratory System

Old School Microfluidics

- Historical Microfluidics: Glass capillary
- Glass Capillary has been broadly exploited in labs
- Capillary Electrophoresis (CE)

Capillary Electrophoresis (CE)

 Introduced in the 1960s, the technique of capillary electrophoresis (CE) was designed to separate species based on their size to charge ratio in the interior of a small capillary filled with an electrolyte.

New Era of Microfluidics

• Due to the advancement of micro/nano fabrication technology, "microfluidics" has been redefined.

Microelectromechanical Systems

- Microelectromechanical Systems (MEMS).
- MEMS is is the integration of mechanical elements, sensors, actuators, and electronics on a common silicon substrate through microfabrication technology.

• Density (ρ):

Density = Mass/Volume (kg/m³)

• Dynamic Viscosity (Viscosity, μ):

Viscosity is a measure of the resistance of a fluid which is being deformed by either shear stress or tensional stress.

which is being shear stress or	

Temp (°C)	Density (kg/m ³)		
100	958.4		
80	971.8		
60	983.2		
40	992.2		
30	995.6502		
25	997.0479		
22	997.7735		
20	998.2071		
15	999.1026		
10	999.7026		
4	999.9720		
0	999.8395		
-10	998.117		
-20	993.547		
-30	983.854		
at various temperatu	in kilograms per cubic meter (SI unit irres in degrees Celsius. °C refer to supercooled water.		

Fluid Mechanics

• Viscosity (μ) – Newton's Theory:

$$\tau = \mu \frac{du}{dy}$$

where τ is Fluid Shear Stress where (du/dy) is change of fluid velocity in y direction

- This is a constitutive equation (a reasonable first approximation).
- Newtonian Fluids.

- Viscosity (μ):
 - Unit: kg/(m.s) = Pa.s = 10 Poise
 - Viscosity of Water at 20°C
 - = 0.01002 Poise
 - = 1.002 cP (centipoise)
 - = 1.002 mPa.s
 - Viscosity of SAE 30 oil at 20°C
 - = 2.9 Poise

Temperature	Viscosity	
[°C]	[mPa⋅s]	
M	M	
10	1.308	
20	1.002	
30	0.7978	
40	0.6531	
50	0.5471	
60	0.4668	
70	0.4044	
80	0.3550	
90	0.3150	
100	0.2822	

Fluid Mechanics

• Surface Tension (γ):

Surface tension is a property of the surface of a liquid. Surface tension is caused by cohesion (the attraction of molecules to like molecules).

Surface Tension (γ):
 Young-Lapalace Equation:

$$\Delta p = \gamma \left(\frac{1}{R_x} + \frac{1}{R_y} \right)$$

Where Δp is the pressure difference, γ is surface tension, R_x and R_y are radii of curvature in each of the axes that are parallel to the surface.

Water at 25°C, γ = 71.97 (dyn/cm)

Δp for water drops of different radii at STP							
Droplet radius	1 mm	0.1 mm	1 µm	10 nm			
Δp (atm)	0.0014	0.0144	1.436	143.6			

Fluid Mechanics

Utilize Surface Tension in Microfluidics

Surface Tension
Driven Flow

Air-Liquid Two
Phase Flow

• Reynolds Number (Re):

Re is a <u>dimensionless number</u> that gives a measure of the ratio of inertial forces to viscous forces.

$$Re = \frac{\rho VL}{\mu}$$

V is the mean fluid velocity (m/s)

L is the a characteristic linear dimension (m) (traveled length of fluid or hydarulic diameter etc.)

Fluid Mechanics

- Reynolds Number (Re):
 - Large Re means inertial force dominates: <u>Turbulent</u>
 <u>Flow (unsteady flow stream, i.e. swirls and vortices).</u>
 - Small Re means viscosity force dominates: <u>Laminar</u>
 <u>Flow</u> (fluid stream follows regular paths, i.e. streamlines).
 - For flow in a pipe, <u>laminar flow</u> occurs when *Re* <
 2300, and <u>turbulent flow</u> occurs when *Re* > 4000.
 - In the interval between 2300 and 4000: <u>Transition</u>Flow.

- Laminar Flow vs. Turbulent Flow
 - Blood Flow in brain $\sim 1 \times 10^2$
 - Blood flow in aorta $\sim 1 \times 10^3$
 - Typical pitch in Major League Baseball $\sim 2 \times 10^5$
 - Person swimming $\sim 4 \times 10^6$

Low Speed Laminar small *Re*

High Speed Turbulent high *Re*

Fluid Mechanics

• Microfluidics (Laminar or Turbulent?)

$$Re = \frac{\rho VL}{\mu}$$

For example: V = 1 (mm/s), $L = 100 \mu\text{m}$

Re =
$$\frac{\rho VL}{\mu}$$
 = $\frac{1000(kg/m^3) \times 10^{-3} (m/s) \times 100 \cdot 10^{-6} (m)}{0.001(kg/m \cdot s)}$ = 0.1

• Laminar Flow in Microfluidic Channel

• Reynolds Number (Re):

The ratio of inertial forces to viscous forces.

$$Re = \frac{\rho VL}{\mu}$$

• Weber Number (We):

The ratio of inertia forces to surface tension forces.

$$We = \frac{\rho V^2 L}{\sigma}$$

• Bond Number (Bo):

The ratio of body forces to surface tension forces.

$$Bo = \frac{\rho a L^2}{\gamma}$$

Equivalent Fluidic Circuit Model

• Equivalent Circuit Model:

Voltage -> Pressure

Current -> Flow Rate

• Equivalent Circuit Model (Resistance, R):

Analogous to electrical resistance, fluid resistance is defined as the ratio of pressure drop over flow rate,

$$R = \frac{\Delta P}{Q} \text{ in } \frac{N \cdot s}{m^5}$$

where ΔP is the pressure difference, in N/m^2 , and Q is the volume flow rate, in m^3/s .

For a pipe with a rectangular cross section with width w, and depth h, and assuming both, laminar flow and Newtonian fluid, the resistance is

$$R = \frac{12\mu L}{w \cdot h^3} \left[1 - \frac{h}{w} \left(\frac{192}{\pi^5} \sum_{n=1}^{\infty} \frac{1}{n^5} \tanh \left(\frac{n\pi w}{h} \right) \right) \right]^{-1}$$

Equivalent Fluidic Circuit Model

• Equivalent Circuit Model (Capacitance, C):

Compliant elements of a fluidic system exhibit the fluidic equivalent of capacitance as a pressure-dependent volume change

$$C = \frac{dV}{dP} \text{ in } \frac{m^5}{N}$$

The fluidic capacitance for a square membrane can be derived by plate theory as

$$C = \frac{6a^6(1 - v^2)}{\pi^4 E t^3}$$

where a is membrane width, in m, E is Young's modulus of membrane, in N/m^2 , t is membrane thickness, in m, and v is Poisson's ratio of membrane (dimensionless.)

• Equivalent Circuit Model (Inductance, H):

In a manner analogous to electrical inductance, fluidic systems are capable of storing kinetic energy in fluidic inductance, H (in kg/m^4)

$$\Delta P = H \frac{dQ}{dt}$$

For incompressible and inert fluidics in tubes of constant cross section A, the fluidic inductance is given by

$$H = \frac{\rho L}{A}$$

Equivalent Fluidic Circuit Model

• Integrated Microfluidic Circuitry Device:

Integrated Microfluidic Circuitry Device:

Equivalent Fluidic Circuit Model

• Integrated Microfluidic Circuitry Device – Time Release

 Integrated Microfluidic Circuitry Device – Time Switch

Equivalent Fluidic Circuit Model

 Integrated Microfluidic Circuitry Device – Oscillator

 Integrated Microfluidic Circuitry Device – Oscillator

Equivalent Fluidic Circuit Model

 Integrated Microfluidic Circuitry Device – Oscillator

 Integrated Microfluidic Circuitry Device – Oscillator

Equivalent Fluidic Circuit Model

 Integrated Microfluidic Circuitry Device – Oscillator

Conclusion

- Advantages and Limitations of Microfluidics
- Challenges
- Future Directions

